МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

СОГЛАСОВАНО: УТВЕРЖДАЮ:

Выпускающая кафедра ГГН Директор ИПСС

Заведующий кафедрой ГГН

И.Н. Розенберг

Т.В. Шепитько

25 мая 2020 г.

25 мая 2020 г.

Кафедра «Системы автоматизированного проектирования»

Автор Тарарушкин Юрий Фёдорович, к.т.н., доцент

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ

«Методы оптимизации»

Направление подготовки: 09.04.01 – Информатика и вычислительная

техника

Магистерская программа: Геоинформационные и кадастровые

М.Ф. Гуськова

автоматизированные системы

Квалификация выпускника: Магистр

Форма обучения: очная

Год начала подготовки 2020

Одобрено на заседании

Учебно-методической комиссии института

Протокол № 5 25 мая 2020 г.

Председатель учебно-методической

комиссии

Одобрено на заседании кафедры

Протокол № 10 15 мая 2020 г.

Заведующий кафедрой

И.В. Нестеров

1. Цели освоения учебной дисциплины

Целью освоения учебной дисциплины (модуля) «Методы оптимизации» является:

- приобретение обучающимися знаний, умений и навыков, необходимых для автоматизированного оптимального проектирования транспортных конструкций и сооружений.

Изучив дисциплину, обучающийся должен знать:

- постановку и математическое описание задач оптимизации несущих конструкций;
- наиболее эффективные численные методы оптимизации;
- особенности анализа и корректировки напряженно-деформированного состояния;
- эффективные способы вычисления градиентов расчетных напряжений и перемещений;
- влияние типа сечения и других факторов на оптимизационный ресурс.

В результате изучения дисциплины должен уметь:

- моделировать несущие конструкции с помощью переменных проектирования, переменных состояния и других параметров;
- выполнить расчет, а также автоматизированный анализ и классификацию ограничений, отражающих требования к проектируемой конструкции;
- анализировать чувствительность переменных состояния (расчетных напряжений и перемещений) к небольшим изменениям переменных проектирования;
- вычислять оптимизирующие приращения независимых и зависимых переменных проектирования;
- определять адекватным способом такие корректирующие приращения переменных проектирования, которые обеспечивают удовлетворение основных требований проектирования;
- использовать компьютерные программы для оптимизации проектных решений.

2. Место учебной дисциплины в структуре ОП ВО

Учебная дисциплина "Методы оптимизации" относится к блоку 1 "Дисциплины (модули)" и входит в его базовую часть.

3. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-2	Способен разрабатывать оригинальные алгоритмы и программные
	средства, в том числе с использованием современных интеллектуальных
	технологий, для решения профессиональных задач
ПКО-8	Определение источников информации об объекте проектирования в
	сфере инженерно-технического проектирования для градостроительной
	деятельности с целью планирования получения такой информации
УК-1	Способен осуществлять критический анализ проблемных ситуаций на
	основе системного подхода, вырабатывать стратегию действий

4. Общая трудоемкость дисциплины составляет

6 зачетных единиц (216 ак. ч.).

5. Образовательные технологии

Преподавание дисциплины осуществляется в форме лекций и лабораторных работ. Лекции проводятся в традиционной классно-урочной организационной форме, по типу управления познавательной деятельностью и на 10% являются традиционными классически-лекционными (объяснительно-иллюстративные), и на 90 % с использованием интерактивных (диалоговых) технологий, в том числе мультимедиа лекций, разбор и анализ конкретных задач. Лабораторные работы организованы с использованием компьютерных программ и мультимедиа (решение проблемных поставленных задач с помощью современной вычислительной техники и исследование моделей). Лабораторные работы выполняются по индивидуальным вариантам. Самостоятельная работа студента организованна с использованием традиционных видов работы и интерактивных технологий. К традиционным видам работы относятся отработка лекционного материала и отработка отдельных тем по учебным пособиям. К интерактивным (диалоговым) технологиям относиться отработка отдельных тем по электронным пособиям, подготовка к промежуточным контролям в интерактивном режиме, интерактивные консультации в режиме реального времени по специальным разделам и технологиям, основанным на коллективных способах самостоятельной работы студентов. Оценка полученных знаний, умений и навыков основана на модульно-рейтинговой технологии. Весь курс разбит на 5 разделов, представляющих собой логически завершенный объём учебной информации. Фонды оценочных средств освоенных компетенций включают как вопросы теоретического характера для оценки знаний, так и задания практического содержания (решение ситуационных задач, анализ конкретных ситуаций, работа с данными) для оценки умений и навыков. Теоретические знания проверяются путём применения таких организационных форм, как индивидуальные и групповые опросы, решение тестов с использованием компьютеров или на бумажных носителях...

6. Содержание дисциплины (модуля), структурированное по темам (разделам)

РАЗДЕЛ 1

Постановка задач оптимизации несущих конструкций

Тема: Вариантно-оптимальное проектирование (переменные проектирования и состояния, параметры конструкции, зависимые переменные проектирования, целевая функция).

Тема: Исходные данные для расчета и оптимизации (координаты, топология, прикрепления, нагрузки, типы материалов, сечений и площадей, ограничения унификации).

Тема: Анализ напряженного состояния (вычисление и анализ расчетных напряжений для каждого элемента конструкции при каждом загружении).

Тема: Линеаризация уравнений состояния и вычисление градиентов расчетных перемещений.

РАЗДЕЛ 2

Теория и практическая реализация оптимизации конструкций

Тема: Матрица активных ограничений, особенности вычисления множителей Лагранжа, определение направления спуска.

Тема: Анализ и классификация ограничений (активные, пассивные и нарушенные ограничения, классификация по невязкам и коэффициентам активности)

Тема: Определение оптимизирующего направления изменения переменных проектирования

Тема: Теория и практическая реализация оптимизации конструкций

Тема: Определение оптимизирующих приращений переменных проектирования (матрица пассивных ограничений, определение длины шага спуска).

Тема: Определение корректирующих приращений переменных проектирования (матрица нарушенных ограничений, стандартная, лучевая и специальная корректировки).

Экзамен